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THE REDUCTION OF CONTRAST BY AIOSPHERIC BOIL

Seibert Q. D aley, William H. Culver,
Frances Richey, and Rudolph W. Preisendorfer

Scripps Institution of Oceanography, University of California, La Jolla, Calif.

ABSTRACT

It is sbown that the probability of receiving light from an object

viewed through a turbulent atmosphere follows a normal Gaussian distribution.

Furthermore the root mean square angular deflection of the points of any

object will be proportional to the square root of the object-to-observer

distance.

From relations of the type described in the examples, it is possible to

predict the apparent contrast throughout a given scene, provided the inherent

contrast distribution, the Optical Air State, and the range of the target is

known. The Optical Air State for a given condition of atmosphere can be

measured using a telephotometer and a series of long thin black bars of varying

widths.

*Ths per was prepared under a contract between the University of
California and the Bureau of Ships, U. S. Navy. Contribution fron
The Scripps Institution of Oceanography, University of California,
New Series No.

** Present address: Rand Corp., Santa Monica, California
*** Present address: Hughes Aircraft Co., Culver City, California



INTRODUCTION

One of several factors determining the form of the image of a distant

object is the time varying distortion caused by inhomogenities in the

refractive index of the atmosphere. As is well known, the shimmer of distant

objects is caused by spatial and temporal variations in th(. index of refrac-

tion of rising columns of hot air, dith the resulting disturbance of the

propagated electromagnetic radiation. This disturbance causes time varying

distortion of the image and loss of fine detailt

This phenomenon is of particular interest to the geodesist, because it

limits the precision with which a telescope can be pointed at a distant
1

object , and to the astronomer, because it blurs the images of the stars and

limits his resolving power.

Experiments on time varying characteristics of optical transmission

through an inhomogeneous atmosphere have been made by Riggs, Mueller, Graham,

and Mote 2, who found that for a path length of several hundred meters the

average apparent instantaneous displacement of a point on a target was greater

than 3 seconds of arc with a maximum displacement of 9 seconds. The instan-

taneous displacements of points separated by more than 5 minutes of arc were

uncorrelated.

Some of the time varying characteristics of the shimmer effect are slow

enough to be discernable to the eye, but much of the effect is so rapid that

only time averaged values of the radiance of the image are important for

visual observation.

The analytic treatment of the propagation of electromagnetic waves

I Washer, F. E., Williams, H. B., "Precision of Telescope Pointing for Outdoor

2 Targets," J. Opt. Soc. Am. 36, 
400 (1946).

Riggs, Mueller, Graham, and Mote, "Photographic Measurements of Atmospheric
Boil," J. Opt.. Soc. Am. 37, 415 (1947).
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through inhcmogeneous media has been considered by a large number of investi-

gators. The rigorous solution of the problem by perturbation methods in

terms of the statistical parameters of the inhomogenities yields results in

very untractable forms, especially for one interested in the transmission

of optical images. Results derived from approximate models have been useful

for specific problems. The use of the approximation of geometric optics

yields results in a form that are most easily used in problems of optical image

transmission, particularly for the consideration of the time-averaged image&

The validity of the geometrical optics approximation of a particular

case can be ascertained by the value of the quantity ca/ \ where

0- is a representative size of a turbulent element, > is the wave

length of light, and r is the distance from the turbulence to the observer.

If OY/ the geometrical optics approximation is valid.
3

For a slit of width "a" the size of the diffraction pattern is equal to

the geometric image of the slit when 0./1 X = 1. Thus the criterion

above is seen to be plausible.

The problem of transmission through an inhomogeneous medium has been

treated by (using the geometrical optics approximation) Bergmann and

5
Chandrasekhar . The results of this paper are consistent with some of those

of Chandrasekhar but are derived from less restrictive assumptions.

For an investigator interested in image transmission the distortion

property of an inhomogeneous medium is usefully described in terms of the

distortion of a point source. More precisely, let a given point in the object

space be designated by the pair of direction components P %,

3 Booker, H. G., and Gordon, 1. E., "Outline of a theory of radio scattering
in the troposphere," J. Geophys. Res. 55, 241 (1950).
Bergmann, P. G., "Propogation of radiation in a medium with random inhomo-
geneities, "Phys. Rev. 70, 486 (1946). '

5 Chandrasekhar, S., "A statistical basis for the theory of Stellar scintilla-
tion," Monthly Not. Roy. Astron. Soc. 112, 475 (1952).
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and let the point be assigned a unit isotropic radiance, The exact form of

(Y 4 C) will be given later. If the distortion action of the medium

changes sufficiently rapidly over an interval of time, the successive images

C 0,j of (1, Y') appear essentially as a continuum of points

(a blur) in the image space. For the purposes of this discussion, a function

0is defined which assigns to each object point ( P ,DY) the time-averaged

radiance - I ,- ,)of the image point (4)oP, . The time-averaged

radiance distribution N on the image space is then representable as a con-

volution of the functiono with the radiance distribution N on the object

space:

where ' is the object space, namely the collection of all directions

(C, ) . Since the location of the observer is held fixed throughout the

entire discussion, the location symbol x has been suppressed in the radiance

function notation (ordinarily written Nk(,. i,) ).

In the following discussion attention is given tc the statistics of the

deviations undergone by a ray traversing a path between a point source and a

screen some distance away. Because of an optical reciprocity law this

derivation applies equally well to an extended field of view, from which light

is received by a 'point' receiver such as an eye or a lens.

METHOD OF APPROACH

A theoretical treatment for transmission through any inhomogeneous
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medium* has been evolved which is based on the following considerations!

The path of sight is assumed to lie within a (spatially and temporally)

uniformly turbulent medium made up of uncorrelated optically inhomogeneous

regions with dimensions small compared to the distance through which the

ray travels. Each light ray undergoes a large number of deflections. Only

small angle deflections need be considered. Using only these assumptions we

may consider the following,

Figure 1 shows the path of a light ray emitted at P traversing a turb-

ulent medium toward an arbitrarily oriented screen TT' a distance r from the

source. The plane of the figure is perpendicular to TT' and passes through

the path PoQ of the undeviated ray. Two perpendicular axes--the x- and

y-axis lie in TT. A segment TQT' of the x-axis is shown. The y-axis is

normal to the plane of the figure and goes through Q. The ray now travels

from Po to a point P1 determined by the condition that the ray will have

turned through an angle whose projection on the plane of the figure is of a

small fixed magnitude o- (in radians). In accordance with our assumptions,

the distance along the segment PoP 1 is large compared to the dimensions of

tle centers of turbulence. The projection (in the manner shown in the figure)

of P1 falls on TT' a distance xI away from Q. As the ray continues along its

path from P1 it wifl undergo further deflections. When its direction has

been changed through another angle whose projection in the plane of the

figure is of the same magnitude c , P0 is projected on the screen, where

it falls a distance x2 away from the projection of Pl'

*Including the oceans and other bodies of water, wherein refractive inhomo-
genities may result from suspensoids, including transparent planktonic
organisms, in addition to any inhomogenities of the water itself.
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In the same way the remainder of the path of the ray is divided up into

segments representing equal angles of deviation c>. , and the projection of

each endpoint Pi is mapped onto the screen TT'. Finally xn will be the x-

distance on TTI of the projection of Pn from the projection of P n- where

Pn-lPn is the last such path segment traversed by the ray before it strikes

the screen. No generality is lost if Pn is taken to lie on TV * Since the

distance over PiPi+ 1 is large compared to the dimensions of the centers

of turbulence, it follows that the curvature of the ray between Pi and Pi +1

is uncorrelated with its curvature during its past or future history so that

the directions of projected path segments are uncorrelated.

The magnitude of x can be found in the following way, using the small

angle assumption. If D. is the distance from P. to TT' , then xi = Dic . For

a large number n of deflections, the value of Di will approach an average

value given by (n - i) dx, where dx is the average distance between Pi and

Pi + 1. Thenx. = (n-i)cod x. The algebraic sign associated with any parti-

cular xi has equal probability of being + or -. It can then be seen that

the distance from the point Q to the point Pn can be found by summation over

all the xi's 1ith the appropriate signs.

Because the xis are uncorrelated, they can be considered to be the steps

in a one dimensional random walk: Let Xn, the last of the xi's be the (signed)

length of the first step in the random walk, xn_l the length of the second and

so on. Therefore absolute magnitude of the jth step will be joc/× y=/,... a

The size of the steps in this one dimensional random walk thus increase

linearly with each step.
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TIE DETAILS OF THE DERIVATION

The probability distribution for a one dimensional random walk can

be calculated in tho following way. The mean square deviation T2fn)

of the distribution for a walk of n steps is equal to the sum of the mean

square deviations for each step:

where

is the (signed) length of the jth step.

Therefore

~6

For large n the expression in brackets approaches 3/3 .

Therefore

2(n ) c 2 c Ct /
d(n 313.

6
From a special central l.imit theorem due to Liapounoff, it can be

shown that the angular probability distribution approaches a normal distri-

bution whose mean is the position on the screen reached by the undeviated

ray. Liapounoff's Theorem states the follov-ing: let xl, x2., x3 ,..., be

independent random variables, and denote mi and 9- as the mean and standard

deviation of xj. Suppose that the third absolute moment of xj about its

mean:

/ = Expectation ( x - rr )

C ramr, .,Matheiiatical Methods of Statistics (Princeton Univ. Press,
19L.6), p p. 215-216,
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is finite for every j and define P 3 as,

n 3

/03a sI

Then if the condition m 4r J(nI/O-(n)]-Ois satisfied, the result is that

the sum -.-c = , -5: is asymptotically noal.

This can be applied to the case of the above random walk in the follow-

ing way:

az .3 c3 ilf~

For large n:

(0 3(r,) CW 3 C 3l 4

and,

Im IMon1 'n- n1'/3/ am ~ n" - A o

and thus the hypothesis of Liapounoff's theorem is satisfied.

Hence it is shown that a contiuui.n of rays starting -,ffith a given initial

direction and which traverse a medium whose optical properties are unifornmly

turbulent will give rise to a continuum of terminal points on the target

plane such that the density of the points projected onto the x-axis follows

a normal distribution.

Since

= nd.,

we may write alternatively

T.12.331, f or fixed cAZ
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Thus the spread of the Gaussian probability dist ibution increases as the

3/2 power of r. !We now introduce the angular variable x/r. In terms

of $ , the spread of the Probability distribution Pr () is proportional

to I/' . The normalized Gaussian probability distribution with root mean

square deviation given by

T'c 3 cA1(
is:

The abovo derivation may be extended to the two-dimensional case. The

new derivation is similar in all details to the former. In particular the

same angle :: is used. However, the projections of all ray segments are now

onto the y-axis in the plane TT', and in general a new average distance dy

must be introduced. The result is:

_1_ 47=/k ~)r3.

In general the two-dimensional probability distribution is of the form:

I~ ~ ~ ~ ~ 2- ) Z1~±i ,.%>7

where / is the correlation coefficient between P]. ('r) and P3 ( 9 ).

Along a horizontal path of sight the vertical displacement of a point would

be expected to be uncorrelated with the horizontal displacement. In this

case

___T ___'_C I F)T (p\~ T) 2 CrX2 1

If the turbulence is isotropic, i.e., if dx = dy = d, then

3c L
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If we set + 4 , then under these assumptions = , dx -= )

we have

The foregoing formulas give the probability that the terminal point Pn on

TT, of a light ray aimed along PoQ lies in the direction ( 06c, , ) as seen

from Po. By tracing the light ray in the opposite direction, these formulas

admit the following interpretation: they give the probability that the

image of the point ('A, ) on TT is at the origin (o,o) of TT'i For fixed

r,(?r is thus the required function defined in (i).

OPTICAL AIR STATE

The lower limit on the size of c is determined by the condition that

the direction of successive steps be uncorrelated. This condition will be

fulfilled if (as assumed above) the average distances dx and d betweenY

successive P is is large compared to the dimensions of the inhomogeneities

of the medium. It follows that the quantities Ax = ((2/3d.) and A (C-=/3d/ )

are properties only of the medium and not of the target. The pair of num-

bers (AxAy) is called the optical air state of the medium and gives a useful

measure of the optical turbulence of the atmosphere. If the turbulence is

isotropic, the optical air state is a single number A = Ax = Ay. In most

applications the turbulence is essentially isotropic. The assumptions 1 = o,

Ax = Ay will be in force for the remainder of the paper. As a consequence

we may write

P ~ d.2 Ir { P

exp {2A-
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and

G) P, e Ps (2)

where

-co< < -+o - < < +o > -

TIE-AVERAGED APPARENT RADIANCE

Actual computations of the time-averaged apparent radiance distribution
Nr can now be carried out by means of formula (1) in which the explicit

expression (2) for the functionP is used. A particularly useful formula

for Nr arises in the following special but important context: let a target

occupy a subregion -, of object space k= {( P, '): - O < 00j -O<

let the apparent radiance distribution Nr over ] be uniform and of magni-

tude tNr. Let the remaining portion -k6 of the object space (the background

of the target) have uniform apparent radiance of magnitude b O. Then,

from (1):

This result, in more detail, states that

~~T (pC 6 ) 4 4 (3)

for all injIY,) i

A perusal of the derivation of(]r would show that (3) (and in fact any

formula making use of the derived r) is strictly applicable only to those
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regions ' of I which are angularly small. It is precisely this kind

of target, however, which is of primary concern in contrast reduction problems

involving atmospheric boil. These targets have their time-averaged radiance

greatly influenced by their background radiance. On the other hand, the

time-averaged background radiance of such targets is virtually unaffected

by the target's radiance.

TIME-AVERAGED APPARENT CONTRAST

The introduction of the notion of contrast greatly facilitates the

solution of visibility problems. Let ('L, 4J and ( V' .) be any

two points in either image or object space. The contrast C (V, si )

of (#, ) with respect to ( AJ V) is defined as

where N is a given radiance distribution, A/( 0,, 0')> -

As an example consider the apparent radiance distribution Nr defined in the

preceding section. Let be an arbitrary fixed point in 6. Then

the apparent contrast function Cr- on Y has the following form:

c .I.Z~~ Nk 6 ~

In this context we can say that the target has a contrast Cr with

respect to its background b . In accordance with the general definition

of contrast, the time-averaged apparent contrast function r necessarily

has the form:

- tj
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Now let (c @/ ) be an arbitrary fixed point in In view of the

coriunents of the preceding section, we may for all important cases write

%~) as:

, [ , j, ) - NI/6N(4)

where (kA) is any point in f . By adopting this convention (3) '-.

yields the following approximate but highly useful contrast formula:

- cf (5)

From this we immediately deduce the g neral facts that

E X for all (#,) in~

and the handy rule of thumb for very small targets of area 0. and arbitrary

shape:

Cj= C i- " (6)

This points up among other things an inverse-cube decay of Cr with range r.

This relation may be used to explain in simple terms the loss of fine detail

on targets as the observer-target distance is increased. For by subdividing

the given target into sufficiently small elements each of area a , (6)

will describe the time-averaged contrast of the element against its back-

ground consisting of the remainder of the target area. Now while the flux

from the element falls off at a rate proportional to a the contrast

(and hence the detectability) of the element falls off at a rate proportional

to I- . In short, fine detail on a receding target is lost at a greater

rate than the flux from the entire target. As a consequence, the detail on

a target is lost from view sooner than the target itself.
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Despite the concession to comp.exity made in (4), the resulting formula (5)

faithfully reproduces the main features of the time-averaging affect of

atmospheric boil phenomena, as the following examples illustrate.

EXA14PLES

A. Long Straight Edge. Consider an infinitely long straight boundary between

two regions of object space each with a distinct uniform apparent radiance

(Figure 2). For this example, the target F consists of all points

( 'k, P ) such that 0 4 The background 'k is the complementary

region of all points ( , such that .> V is assigned the

uniform apparent radiance 4 . From (3) with (2):

o J

OXl- y ') 2

is plotted in Figure 2.

The time averaged apparent contrast is, by (5):

-E, ~ ~ ~ C ( ( )=f P I,

The limits

which hold for all / , agree with the values one would expect on the basis

of the values of the unshiunered contract Cr discussed in the preceding action.
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B. Long Thin Bar. A long thin bar may be represented by the sub-

region of 7 consisting of all points (frj 'b) such that - P, ,o.

All other points of I form the background . . is absigned the

uniform radiance j N ; 1,V , the radiance b p . Then from (5) with (2):

0.. 00 f i

It is easy to verify that attains a maximum at the point (0,0).

-d4-(O,O) is the extreme contrast attained by ?r over , i.e., r (0,0) is

either a maximum (if U110,0) is n!ositive) or a minimum (if Ur(O,0) is negative).

It is clear from the geometry in this and the preceding example that Cr is

independent of . Some contrast profiles of shimmered bars are shown in

Figure 5. Observe that the widths of the bars are given in terms of the

dimensionless parameter 1F14i . These facts will be of some use in the

discussion of the measurement of A.

C. Rectangle. A rectangle in ! centered on the origin is defined

as the subregion I, consisting of all points suk k) such that -c o,

_d b From (5) with (2), after some reductions,

The computations of C for a rectangle can therefore be carried out by

using 'the results of example B.
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D. Circular Disk. A circular disk 1 in k centered on the origin

and of angular radius is the set of all points such that

(Figure 3). From (5) with (2) the associated contrast expression is:

An examination of the function Cr would show that in this case

V ( ) (circular symmetry). It is therefore sufficient to

consider the evaluation of

alr- ff j

Adopting the following transformation of coordinates: 1I' $'COS$'

€ =¢sin G'

we have:

C (0" exp Se

o

The inner integral is readily evaluated:
e~r 7r

fa/19P ' f cOs(X'Z , '.-

where Io is a modified Bessel function of the first kind, of zero order, which

has the series representation:

I=,
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Hence

# ( )~ K2AJ i- CIO{

which may be rewritten as:

Y 0~K) - -!) C'

where P(o&; Aei)=f e- defines the incomplete Gamma function, for

which tabulations exist 7 , and 4 0"'I2/2AF, _ @2/ fr . It is easy

to check that Uri is a decreasing function for increasing kx , so that

I r Iattai.ns a maximumi at (O,O)i Thus if i r (0,0)) is below a threshold

contrast, the entire disk is undetectable. The formula for Ur(OO) is

readily obtained:

Z7,~ ~ ~ ~ ( 2~ 0,0 1A-

For angularly small disks

C (O~o C -- C-i <-A1 3

where GL=r(#-) , and which agrees with (6). If C-o , i.e., if the

disk is infinitely large, then since p(co - A.+; 0 , the general expression

yields:

).C ',-)= 0 _ - c)

as expected.

E. One example of the effect of atmospheric boil on the ability to resolve

two objects which are close together is illustrated in Figure 4. Two identical

black bars of angular width F- , separated an angular distance iR

have their contrast profiles smeared into a characteristic shape

7. Pearson, Karl, Tables of the Incomplete Gamma function (Camb. Univ. Press,

1946).
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shown by the dashed curve. The object space contrast of -1 at the center of

each bar is invariably raised to - 0.6 in the image space, and the zero

ccntrast at the center of the gap between the bars is invariably pulled down

to - 0.74. Such predictable features of shimmered contrast profiles can be

used to generate an experimental Proceire for determining A, one of which is

appended belowi

MEAUR'fla1ENT OF OFTICAL AIR STATE

For a bar whose width 2a is less than , the values I ' )I

are measurably less than l.Cr [ Figure 5 depicts the contrast profiles

of four long black bars (hence Cr = -1).. The width of each differs

by a factor of four from its predecessor. From example B,
0-
C_(Qo

By means of this integral, each choice of the ratio -o./1A-- leads to a

corresponding value Cr(O,O . These correspondences are graphed in Figure 6.

The experimental procedure consists in measuring dr(O,O) for each bar by

scanning the bar with a telephotometer at a given range r. The four corres-

ponding values of 2/-I are then picked from the graph. Since r is

fixed, and 2a is known for each bar, A can then be determined.

1,1e observe finally that before using the graph in Figure 6 the measured

values Cr(O,O) must be corrected to remove the reduction effect on the contrast

induced by the scattering and absorption mechanisms of the atmosphere. For

horizontal paths of sight, with the usual uniformity properties, the corrected.

values are given bY CO0,0) exp -/LI where L is the attenuation length

of the atmosphere.
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CAPTIONS

Figure 1. Illustrating the geometry of the derivation of

Figure 2. Illustrating the time-averaged radiance profile of a shimmered
edge (Example A).

Figure 3. Diagram for the derivation in example D.

Figure 4. The characteristic shape of the time-averagedcontrast profile
of two long black bars of the dimensions shown.

Figure 5. Illustrating the characteristic time-averaged contrast profiles
of long black bars as a function of bar-width.

Figure 6. Graph used in the experimental determination of A.
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